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Abstract

Both the ability to generate DNA data and the variety of analytical methods for conservation genetics are
expanding at an ever-increasing pace. Analytical approaches are now possible that were unthinkable even
five years ago due to limitations in computational power or the availability of DNA data, and this has
vastly expanded the accuracy and types of information that may be gained from population genetic data.
Here we provide a guide to recently developed methods for population genetic analysis, including identi-
fication of population structure, quantification of gene flow, and inference of demographic history. We
cover both allele-frequency and sequence-based approaches, with a special focus on methods relevant to
conservation genetic applications. Although classical population genetic approaches such as FSTST (and its
derivatives) have carried the field thus far, newer, more powerful, methods can infer much more from the
data, rely on fewer assumptions, and are appropriate for conservation genetic management when precise
estimates are needed.

Background

The estimation of metapopulation structure and
gene flow was one of the first applications of pop-
ulation genetics, and despite spectacular advances
in the types and amount of genetic data now
available, many methods still used today are based
on theoretical foundations built more than half a
century ago (Fisher 1930; Wright 1931). These
methods have provided population geneticists with
the tools to analyze their data and robust, mean-
ingful ways in which to interpret data from natural
populations (Weir and Cockerham 1984; Slatkin
and Barton 1989; Neigel 2002). However, it is now
widely recognized that the idealized models of
population structure, migration, demographics,
and evolution on which these methods are based
are far from realistic and are unlikely to occur in
nature (Whitlock and McCauley 1999). This is
particularly true in conservation genetic assess-
ments because most populations and species of
conservation concern are small and/or have re-
cently declined in size, experienced fragmentation,

or otherwise been perturbed. These are exactly the
kind of demographic situations that can bias FSTST-
based estimates of migration (or other approaches
that assume mutation-drift equilibrium; Whitlock
andMcCauley 1999; Kinnison et al. 2002). Despite
the limitations, Wright’s FSTST (1951) has remained
the standard parameter used to describe the
amount of differentiation among pre-defined sub-
populations, and from this, to estimate migration
rates (Neigel 2002, Weir and Hill 2002). FSTST-based
approaches are well understood and easily applied,
and many investigators rely on these relative mea-
sures of genetic variance as the primary descriptors
of population genetic structure (e.g., Sites et al.
1999; Larson et al. 2002; Courtois et al. 2003;
Saint-Laurent et al. 2003). Thus, in the situations
where results have the most practical importance –
guiding conservation efforts and identifying
genetically distinct management units, evolution-
arily significant units, or species boundaries – tra-
ditional population genetic analytical methods
may be at their worst, and are less-than-optimal at
best.
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Several authors have provided reviews of the
use of FSTST in the literature, but have drawn con-
tradictory conclusions about its continued utility.
Considering primarily allozyme data, Slatkin and
Barton (1989) used simulations to show that FSTST

was the best method then available not only for
describing population subdivision, but also as a
basis for estimating gene flow, Nm, via Wright’s
(1951) equation FSTST ¼ 1/(4Nm+1). Slatkin and
Barton (1989) noted, however, that although FSTST

can be applied to DNA data, it cannot use all the
information in the data and should be superseded
by more sophisticated approaches. Bossart and
Prowell (1998) concurred, and called for advances
in statistical analysis to match advances in the
laboratory, stating, ‘‘The challenge now is to de-
velop and implement analytical methods that keep
pace with technology and allow more precise
estimates of gene flow in contemporary time.’’

Here we argue that, while FSTST will continue to
be used as a comparative benchmark in population
genetic studies and as a basic descriptor of popu-
lation structure (Neigel 2002), advances in data
collection and statistical analysis are beginning to
meet Bossart and Prowell’s challenge and have
made it possible to infer far more about the his-
torical and current demographics of natural pop-
ulations than can be done using traditional
approaches (Beerli 1998; Beerli and Felsenstein
1999, 2001; Arbogast et al. 2002). In particular,
though computationally intensive, coalescent-
based analyses can estimate several parameters
simultaneously, and are not based on summary
statistics but instead determine the overall set of
parameters that best describe the data. In addition
to an estimate of overall population structure or
average divergence comparable to FSTST, this
parameter set can include estimates of: the number
of genetically definable subpopulations in the
sample; the number of genetically distinct clusters
that have been sampled; differentiation estimates
for each pair of populations; asymmetrical pair-
wise gene flow estimates; the relative effects of
isolation and migration; current and historical
effective population sizes; and the demographic
history of the populations. These approaches are
also better able to differentiate among alternative
explanations for a given genetic signal than are
simple summary differentiation statistics. For
example, simple values of FSTST cannot distinguish
between a situation of high migration between

populations with a long divergence time, and one
of a relatively recent shared history but no ongoing
gene flow. Recently developed methods, on the
other hand, have the potential to provide infor-
mation on the importance of current migration
relative to historical associations among popula-
tions (Nielsen and Wakeley 2001), as well as
demographic information on population history,
growth, and variability (e.g. Wakeley 1996;
Beaumont 1999; Beerli and Felsenstein 2001).

Maximum likelihood and Bayesian inference
approaches (see Box 1) have led to advances in
phylogenetic systematics (Lewis 2001), and these
same methods are expanding the analytical power
available to population and conservation geneti-
cists (Shoemaker et al. 1999). However, although
the literature on alternative and coalescent-based
estimators of population structure and demo-
graphic history is developing rapidly, many of the
methods may be inaccessible to conservation
biologists attempting to incorporate genetic data
into a conservation and management program for
an endangered species. In addition, these methods
do come with their own limitations, including (1)
computational power, which is steadily increasing,
(2) user friendliness, which is steadily decreasing,
(3) varying assumptions of general levels of
diversity, equilibrium, recombination, levels of
gene flow, etc. (detailed below by method), and (4)
the need for large data sets to simultaneously
estimate multiple parameters with accuracy. Fur-
thermore, as in phylogenetic systematics, careless
use of complex methods can lead to problems
(e.g., over-sensitivity to Bayesian priors, lack of
testing for convergence, etc.; Huelsenbeck et al.
2002). Thus users must be aware of potential
problems with a chosen method and how they
apply to particular data sets. Our goal here is
therefore to describe the types of information that
can be gained through new analytical approaches
to population genetic data (both allele-frequency
or sequence based; see Sunnucks 2000 for an
overview of DNA marker choice), provide an
overview of their use, and direct readers to addi-
tional references and methods relevant to partic-
ular situations.

Changing genetic data, changing analyses

From its inception, the estimation of FSTST has been
adapted to each successive form of genetic data
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produced (e.g., GSTST, multiple alleles, Nei 1973; se-
quence data, Weir and Cockerham 1984; NSTST,
restriction-site variation, Lynch and Crease 1990,
haplotypes, (AMOVA) Excoffier et al. 1992;
Slatkin 1993; Holsinger and Mason-Gamer 1996;
Software summarized in Schnabel et al. 1998). The
increased use of microsatellite markers, in partic-
ular, has led to the development of variations on
FSTST that attempt to account for the high mutation
rates of microsatellite alleles by using the stepwise
mutation model (SMM) rather than the infinite
alleles model (IAM) in their estimation of differ-
entiation (RSTST, Slatkin 1995, (dl)2, Goldstein et al.
1995, FST Michalakis and Excoffier 1996; qSTST

Rousset 1996; Zhivotovsky 1999). However, mi-
crosatellites do not always follow a strict SMM
(Ortı́ et al. 1997; Colson and Goldstein 1999;
Gardner et al. 2000; Van Oppen et al. 2000), and
even when they do (i.e., in simulation studies), RSTST

does not appear to be consistently superior to FSTST

(Gaggiotti et al. 1999; Balloux and Goudet 2002;
Balloux and Lugon-Moulin 2002). Thus, there has
been considerable controversy over the best
method for the analysis of microsatellite allele
frequency data, yet all of the above methods share
the common conceptual approach of calculating

summary statistics based on the variance in allele
frequencies within and among populations. In
addition, methods for estimating these summary
statistics have increased in complexity. For exam-
ple, the program HICKORY (Holsinger et al.
2002) estimates FSTST from dominant markers such
as AFLPs using Bayesian inference, and Weir and
Hill (2002) have provided an updated, maximum-
likelihood based estimator of Weir and
Cockerham’s h (1984). However, despite these
sophisticated approaches, the end result is still an
FSTST analog subject to all the limitations of the
traditional estimator.

One of the most significant theoretical devel-
opments in genetic analysis is the concept of the
coalescent, which links demographic history with
population genealogy (Kingman 1982; reviewed
by Hudson 1990; Nordborg 2001). Approaches
based on coalescent methods provide estimates of
effective population size and past demography
that reflect the evolutionary history of the popu-
lation rather than the current allele-frequency
distribution (Waples 1989; Beerli 1998; Crandall
et al. 1999; Williamson and Slatkin 1999; Ander-
son et al. 2000). Thus, while traditional FSTST

approaches are still very useful for estimating

Box 1.

While traditional estimators in population genetics could be calculated using simple analytical calculations, modern population

genetic analyses rely heavily on computer power. This is especially true for methods based on MAXIMUMMAXIMUM LIKELIHOODLIKELIHOOD or

BAYESIANAYESIAN INFERENCEINFERENCE.

The concept of LIKELIHOODLIKELIHOOD was first developed by R.A. Fisher (1925) to distinguish it from the concept of probability. We

can define a probability model P(D|H) as the probability P of obtaining the data D given the hypothesis H, according to a

probability model. Whereas in likelihood, we have L(H|D), the likelihood L, of the hypothesis H, given the data D and a specific

model which is proportional to P(D|H). In other words, with probability the data are variable with a constant hypothesis, while in

likelihood the hypothesis is variable and the data are constant (Edwards 1992).

BAYESIANAYESIAN INFERENCEINFERENCE is described by Bayes’ rule as

PðH jDÞ ¼ PðDjHÞ � PðHÞ
P ðDÞ ;

where the prior probability of the hypothesis P(H) is combined with the sampling distribution P(D|H) and conditioned on the

known data P(D) to yield a posterior probability of the hypothesis given the data (Gelman et al. 2000). While the posterior

probability is easy to formulate conceptually, in practice it is all but impossible to calculate analytically in population genetic

models. Therefore, posterior probabilities of population genetic parameters for large data sets are typically approximated using

MARKOVARKOV CHAINCHAIN MONTEONTE CARLOARLO (MCMC) simulation (Gilks 1996), a general iterative method for finding likelihood maxima.

This has the advantage of allowing sophisticated data analysis to be conducted in far less computational time than would be

required for a full likelihood-based analysis.

Edwards, A.W.F. (1992) Likelihood. Baltimore: The Johns Hopkins University Press.

Fisher, R.A. (1925) Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd.

Gelman, A., J.B. Carlin, H.S. Stern, and D.B. Rubin. (2000) Baysian Data Analysis. Boca Raton: Chapman & Hall/CRC.

Gilks, W., S. Richardson, and D. Spiegelhalter. (1996) Markov Chain Monte Carlo in Practice. London: Chapman & Hall.
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current allele distributions within and among
populations, coalescent-based methods can use the
stochastic reduction in lineage number looking
backwards through time to infer the past demo-
graphic history of the population based on a
model of evolution for the marker being used. By
their nature, they rely heavily on computationally
intense statistical methods and increasingly larger
data sets to make accurate inferences based on the
genetic data. Although they will still be limited by
our ability to accurately model the processes in-
volved (e.g., microsatellite mutation, as discussed
above), the potential benefit is that coalescent-
based methods can use more of the information
contained in the data to provide additional, more
accurate estimates of population parameters
compared to methods with less realistic assump-
tions. A more detailed treatment of coalescent
theory is beyond the scope of this paper, but we
refer readers to reviews by Hudson (1990),
Nordborg (2001), and Stephens (2001).

Beyond population structure: what else can genetic

data tell us?

Neigel (1997) described the ‘‘standard approach’’
used in population genetic studies, in which genetic
markers are used to estimate FSTST, which is in turn
used to produce an estimate of migration between
populations based on Wright’s island model.
Although he also considered DNA data and coa-
lescent methods as an alternative to the standard
FSTST – allozyme approach (Neigel 1997), the field
had not advanced enough to provide real alter-
natives to the traditional methods. In the past se-
ven years, however, new statistical methods have
been developed along with an increase in genetic
data provided by large sample sizes and DNA
markers such as microsatellites, sequences, and
most recently, single nucleotide polymorphisms
(SNPs; see review by Brumfield et al. 2003). Thus,
it is now appropriate to consider alternative ap-
proaches for estimating migration rate in natural
populations as well as other population parame-
ters that were unapproachable using the FSTST – al-
lozyme framework. Below we provide an overview
of methods that together provide alternatives at
each step of the analytical process, beginning with
the definition of populations, and continuing to
the estimation of the recent demographic history

of each genetically distinct sub-population
(Figure 1).

How many populations?

A central problem for conservation genetics is the
identification of discrete populations, management
units (MUs), and evolutionarily significant units
(ESUs) (Moritz 1994; Crandall et al. 2000). This
problem can be especially acute when a species is
more or less continuously distributed (Diniz-Filho
and Telles 2002). Unfortunately, traditional esti-
mators of population structure rely on the a priori
definition of populations, and their informative-
ness will be greatly reduced if these pre-defined
populations do not accurately describe the bio-
logical reality.

Several recent methods attempt to circumvent
this problem by dividing the total sample into
‘‘clusters’’ of individuals, each of which fits some
genetic criterion that defines it as a group (Table 1:
Pritchard et al. 2000; Dawson and Belkhir 2001).
These methods are not coalescent based. Rather,
individuals are assigned to groups based on their
multi-locus genotypes and the assumption that the
markers should be in Hardy–Weinberg and linkage
equilibrium within each randomly mating subpopu-
lation or deme. Conceptually, these methods stem
from mixed-stock assessment tests (Pella and
Milner 1987; Smouse et al. 1990), and are related
to the methods of Paetkau et al. (1995) and
Rannala and Mountain (1997), which assign
individuals of unknown origin to a given sampled
population based on the allele frequencies in all
sampled populations and that of the test individual
(see next Section). In a sample partitioning meth-
od, however, the goal is not to assign unknown
individuals to known populations, but to divide
the total sample of genotypes into an unknown
number of subpopulations. This is a similar goal to
various phylogenetic clustering methods, but the
assignment approach differs in its treatment of
individual multi-locus genotypes and is thus a
complementary method that can provide infor-
mation despite a lack of phylogenetic structure
(Moazami-Goudarzi and Laloe 2002).

The most widely used genotypic clustering
method thus far is that implemented in the pro-
gram STRUCTURE (Pritchard et al. 2000). This
Bayesian clustering method takes a sample of
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genotypes and uses the assumption of Hardy–
Weinberg and linkage equilibrium within subpop-
ulations to find (1) the number of populations, k,
that best fits the data, and (2) the individual
assignments that minimize H–W and linkage dis-
equilibrium in those subpopulations. Thus, with
no prior information on population sampling de-
sign, STRUCTURE provides an estimate of the
number of subpopulations, each of which contains
a set of individual genotypes that are in H–W
equilibrium. This allows the researcher to let the
data define the populations, rather than making
best-guess definitions of populations prior to the
analysis of genetic structure or using sampling
location as a surrogate for the genetic population
definition. Furthermore, if all potential source
populations have been sampled, the probability
output of STRUCTURE can act as a fully
Bayesian assignment test for unknown individuals
(Manel et al. 2002). Recent advances to the
method of Pritchard et al. (2000) include an

extension that exploits data on linked markers to
infer the source populations contributing to the
sample, and an updated version of the software
(v2.1; Falush et al. 2003).

A very similar method was developed by
Dawson and Belkhir (2001) in their program
PARTITION. Like STRUCTURE, PARTITION
uses Bayesian inference and a likelihood model to
identify population sub-division and assign indi-
viduals to populations on the basis of their geno-
types at co-dominant marker loci. Also as in
STRUCTURE, the basis for the definition of
subpopulations in PARTITION is the identifica-
tion of groups of individuals that conform to
Hardy–Weinberg and linkage equilibrium condi-
tions. However, one problem for any assignment
test is the presence of admixed individuals in the
sample, and an important difference between
STRUCTURE and PARTITION is the latter’s
assumption that all individuals are of pure ances-
try; the former allows for the presence of admixed

Marker choice depends on
specific application.

New methods need many loci to 
produce meaningful results.

How much genetic variation is
in each population?
Do the populations differ?

Is the genetic variation
subdivided? What are the
migration rates and levels of 
gene flow? What are the
effective population sizes?

Have historical
demographic events shaped
the distribution of the
genetic variation?

SAMPLING

Number and distribution of sampling locations.
Number of samples per site.

COLLECT GENETIC DATA

MICROSATELLITES; SEQUENCE DATA; SNPs

ASSIGNMENT TESTS

WHICHRUN
IMMANC
BAYESASS+

GENETIC DIVERSITY

LAMARC
MDIV

POPULATION STRUCTURE AND MIGRATION RATES

GENETREE
MIGRATE
MDIV
NCA

POPULATION DEMOGRAPHY

DEFINE POPULATIONS

STRUCTURE; PARTITION; BAPS

How many genetic populations are there?
Do they correspond to the sampled populations?

Data analysis

Assignement tests provide
an alternative analysis to both
traditional AND coalescent
methods

Between population analyses

Within and among population analyses

LAMARC
BOTTLENECK
M-RATIO
SKYLINE PLOTTER
NCA

Figure 1: Flowchart of stages in a conservation genetic analysis at which newly developed methods can be applied. At each stage,
several analyses are possible depending on the questions being asked. Programs are detailed in the text and in Table 1.
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Table 1. Software available for conservation genetic analyses. See text for details

Program Data Type Website References

How many populations?

STRUCTURE Allelic pritch.bsd.uchicago.edu/

software.html

Pritchard et al. (2000)

PARTITION Allelic www.univ-montp2.fr/�genetix/

partition/partition.htm

Dawson and Belkhir (2001)

BAPS Allelic www.rni.helsinki.fi/�jic/

bapspage.html

Corander et al. (2003)

Which population?

DOH Allelic www2.biology.ualberta.ca/

jbrzusto/Doh.php

Brzustowski (2002)1 and

Paetkau et al. (1995)

WHICHRUN Allelic Www.bml.ucdavis.edu/

whichrun.htm

Banks and Eichert (2000)

IMMANC Allelic www.rannala.org/labpages/

software.html

Rannala and Mountain (1997)

NEWHYBRIDS Allelic http://ib.berkeley.edu/labs/

slatkin/eriq/software/

software.htm

Anderson and Thompson (2002)

This population?

GENECLASS Allelic www.montpellier.inra.fr/URLB/

index.html

Piry and Cornuet (1999)1

Migration and gene flow

MIGRATE Sequences, allelic data evolution.genetics.washington.

edu/lamarc/migrate.html

Beerli and Felsenstein (2001)

GENETREE mtDNA Sequence http://www.stats.ox.ac.uk/

mathgen/software.html

Bahlo and Griffiths (2000)

MDIV mtDNA Sequence www.bscb.cornell.edu/

Homepages/Rasmus_Nielsen/

files.html

Nielsen and Wakeley (2001)

BAYESASS+ Allelic data,SNPs www.rannala.org/labpages/

software.html

Wilson and Rannala (2003)

Growing or declining? inference

of past demography

ARLEQUIN Sequence, SNPs,

microsatellites

http://lgb.unige.ch/arlequin/ Schneider, Roessli, and

Excoffier (2000)1

FLUCTUATE Sequence, SNPs,

microsatellites

http://evolution.genetics.

washington.edu/lamarc/

fluctuate.html

Kuhner et al. (1998)

GENIE Sequences http://evolve.zoo.ox.ac.uk/

software.html

Pybus and Rambaut (2002)

BOTTLENECK http://www.montpellier.inra.fr/

URLB/bottleneck/bottle-

neck.html

Piry et al. (1999)

M-RATIO Microsatellites http://santacruz.nmfs.noaa.gov/

staff/carlos_garza/software.html

Garza and Williamson (2001)

BATWING Linked loci http://www.maths.abdn.ac.uk/

�ijw/downloads/download.htm

Wilson et al. (2003)

MSVAR Microsatellites http://sapc34.rdg.ac.uk/�mab/ Beaumont (1999)

GEODIS Sequences; AFLPs http://inbio.byu.edu/Faculty/

kac/crandall_lab/computer.html

Posada et al. (2000)1

1Website citation only.
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individuals. These individuals of hybrid origin are
assigned proportionally to two or more popula-
tions (another program, NEWHYBRIDS
(Anderson and Thompson 2002), explicitly tests
for the presence of admixed individuals in a pop-
ulation and categorizes them (i.e., F1, F2, B1, etc.),
a feature that could find applications in many
conservation genetic analyses). Because of the
inherent uncertainty in the execution of Bayesian
programs using Markov Chain Monte Carlo
(MCMC) simulation (see Box 1), it is probably
advisable to perform multiple runs with a given
data set to evaluate the consistency of the results
for convergence. Similarly, these methods are rel-
atively untested in terms of their ability to detect
population structure or make population assign-
ments when levels of gene flow are relatively high
(FST < 0.05; but see Berry et al. 2004), and pre-
liminary results indicate that they may not per-
form well when many populations (>10) are
included in the analysis (IEP, unpublished data).
Thus for now we would recommend caution in the
analysis of empirical data sets, using multiple runs
and a variety of software applications whenever
possible, to provide an index of the robustness of
these methods and the strength of the signal in the
data.

Another approach, taken by Corander et al.
(2003) and implemented in the Program BAPS,
uses Bayesian assessment to determine the number
of genetically distinct populations present in a
sample of user-defined populations (Np). Like the
above methods, BAPS assumes both Hardy–
Weinberg and linkage equilibrium, as well as a
‘‘reasonably low’’ mutation rate (Corander et al.
2003). However, BAPS differs from STUCTURE
and PARTITION in at least two significant ways.
First, it treats each population as a unit rather than
considering individuals separately, and uses prior
information about the geographic sampling design
to inform the analysis. Second, BAPS is based on
estimating allele frequencies and determining
which of the populations have different allele fre-
quencies, rather than partitioning individuals into
HWE populations based on their multi-locus
genotypes. This information is then used to recal-
culate the allele frequencies in the re-defined pop-
ulations. The method thus represents a more
sophisticated estimator of basic allelic differentia-
tion among populations, comparable to a Fisher’s
Exact test (Raymond and Rousset 1995). It has the

advantage, however, of grouping non-differenti-
ated populations and re-calculating the allele fre-
quencies based on the merging of these
populations. The output (allele frequencies in N
populations) can then be used in a traditional dis-
tance–based analysis, incorporated into an assign-
ment test (see beyond), or used in other population
genetic analyses.

Finally, Dupanloup et al. (2002) have devel-
oped a method that makes no assumptions about
Hardy–Weinberg or linkage equilibrium, and, like
BAPS, uses the genetic data to define groups of
populations that are maximally differentiated from
each other. As in BAPS, the number of groups the
populations are to be divided into must be defined
a priori. However, the method of Dupanloup et al.
(2002) also considers the spatial relationships
among the populations, and thus can identify the
locations of barriers to gene flow between groups.
This may have significant advantages for conser-
vation geneticists seeking to group populations or
MUs into ESUs (Moritz 1994; Crandall et al.
2000).

Assignment tests: which population?

A closely related set of methods use allele fre-
quency data from known populations to deter-
mine the most likely source of an individual with
a given genotype when the actual source of the
individual is unknown (Table 1, see also Davies
et al. 1999). These approaches are much less
computationally intense than the partitioning
methods, and have been applied to wildlife
forensics (Primmer et al. 2000; Manel et al. 2002)
and fisheries stock analysis (Utter and Ryman
1993), as well as the study of migration and dis-
persal events in natural populations (Waser and
Strobeck 1998; Malone et al. 2003). Although
crude genetic assignments can be made even with
relatively low variability markers provided that
fixed differences exist among candidate popula-
tions (e.g., mtDNA sequences, Fabiani et al.
2003), hyper-variable marker systems and more
sophisticated analytical approaches are needed
when the populations in question are less diverged
(Paetkau et al. 1995; Rannala and Mountain
1997; Manel et al. 2002).

The most commonly used assignment test was
developed by Paetkau et al. (1995) and is imple-
mented in the programs DOH (see Table 1) and
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WHICHRUN (Banks and Eichert 2000). The
method calculates the likelihood of a given indi-
vidual’s multi-locus genotype originating in each
of two or more candidate populations (the allele
frequencies of which are estimated from the sam-
ple) under the assumptions of Hardy–Weinberg
equilibrium and linkage equilibrium (although it
seems to be fairly robust to violations of this
assumption – Cornuet et al. 1999). It is worth
emphasizing that both of these assignment tests
are computationally straightforward and easy to
interpret, so provide a good complementary
analysis that may be used in conjunction with
traditional estimators of population structure.
Another assignment program IMMANC, devel-
oped by Rannala and Mountain (1997), differs in
that it uses a Bayesian approach to estimate the
population allele frequencies from the sample al-
lele frequencies, while DOH and WHICHRUN
assume that the sample allele frequencies represent
the population accurately. IMMANC is also
capable of not only assigning individuals to their
source population, but also of identifying indi-
viduals with recent immigrant ancestry (i.e., indi-
viduals with immigrant relatives one or more
generations removed), even when the source pop-
ulations are relatively similar.

Cornuet et al. (1999) developed a third assign-
ment test, as well as a modification that statisti-
cally excludes potential source populations for a
given individual rather than attempting to assign
the individual to a source population (imple-
mented in GENECLASS, see Table 1). This al-
lows for the situation in which not all potential
source populations were sampled, thus asking the
question ‘‘did this individual come from this
population?’’ rather than ‘‘of these sampled pop-
ulations, which is the most likely source of this
individual?’’ Because the new assignment method
of Cornuet et al. (1999) did not perform as well as
existing methods, GENECLASS couples the
Bayesian assignment method of Rannala and
Mountain (1997) with the new exclusion modifi-
cation. Finally, Manel et al. (2002) compared the
partially- Bayesian method of Rannala and
Mountain (1997) with the fully Bayesian method
of Pritchard et al. (2000). The use of STRUC-
TURE as an assignment test has the advantage
that it considers all individuals and populations
simultaneously, rather than testing each individual
separately for evidence of migrant genetic signal,

and this approach improves the power to detect
multiple migrants (Pritchard et al. 2000). How-
ever, STRUCTURE assumes that all potential
source populations have been sampled, and the
lack of this requirement is a significant advantage
of the GENECLASS method (Manel et al. 2002).

Alternative estimators of migration rates and
divergence time

The migration rates estimated from genetic data
represent quantities fundamentally different from
estimates derived from physical capture-recapture
studies or direct observations. Whereas physical
capture or observation methods provide a snap-
shot of animal movements, as well as ecological
information not obtainable from genetic data,
indirect genetic estimates of migration rate repre-
sent an average of the actual successful migration
rate among the populations (i.e., migrations that
led to reproduction). The most commonly used
genetic estimator of migration rate is derived from
FST, and represents the average level of migration
among a group of populations, under the
assumption of an island model, via the theoretical
connection given by the formula of Wright (1931);
FST » 1/(4Nm + 1).

Despite the imprecision of this relationship in
most meaningful biological settings (and the
additional assumptions of equal, constant popu-
lation sizes and symmetrical migration), this esti-
mator continues to be used both for historical
reasons and because of its claim of a direct link
between genetic diversity and the calculated
migration rate. Even this link, however, has re-
cently been called into question by Whitlock and
McCauley (1999), who argue that the unrealistic
assumptions upon which this formula is based
make the translation of FST (or RST) values into
estimates of migration rate useless. A similar sen-
timent was expressed by Beerli (1998), especially in
regards to the assumption of symmetrical migra-
tion rates.

Coalescent-based methods have been devel-
oped to make inferences about populations,
including effective population size, growth rate,
divergence times, and migration among subpopu-
lations (Beerli and Felsenstein 2001, Nielsen and
Wakeley 2001). The last category of estimators in
particular promises to provide an alternative to the
assumption-laden estimates of Nm derived from
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FSTST, potentially increasing the accuracy of
migration estimates and allowing biologically
realistic situations such as asymmetric migration
(Beerli 1998). Arbogast et al. (2002) have provided
a comprehensive review of divergence time esti-
mation at both phylogenetic and population ge-
netic timescales, and we will not attempt to
duplicate their effort here. Instead we focus on
alternatives to the Nm estimate traditionally de-
rived from FSTST in population genetic analyses.

A variety of coalescent-based methods have
now been developed to evaluate migration among
populations under different models of population
structure and using DNA sequences, microsatellite
allele frequencies, or both (Wakeley 1996; Beerli
and Felsenstein 1999, 2001; Bahlo and Griffiths
2000; Nielsen and Wakeley 2001; Gaggiotti et al.
2002; Wilson and Rannala 2003). The programs
GENETREE (Bahlo and Griffiths 2000), and
MDIV (Nielsen and Wakeley 2001) both consider
single-locus, non-recombining DNA sequence
data (Table 1). Both programs use an infinite-sites
model of sequence evolution, which limits their
usefulness with highly variable sequences. MDIV
(Nielsen and Wakeley 2001) is designed to jointly
estimate migration rates (including asymmetric)
and divergence times between a pair of popula-
tions. This allows the user to distinguish between
ongoing migration and the lingering effects of
historical association as possible explanations for
population similarity, a critical failing of FST-
based estimates of Nm. The method also provides
current and historical estimates of population size.
Similarly, GENETREE generates a tree and pro-
duces coalescent-based maximum likelihood esti-
mates of mutation rate, migration rates, and
population growth rates, as well as the time to
most recent common ancestor (TMRCA) for the
sequences.

A more general program, MIGRATE, was
developed by Beerli and Felsenstein (2001) to
estimate migration rates and effective sizes of n
populations using a maximum likelihood ap-
proach. MIGRATE provides results very similar
to those of GENETREE, with more flexibility in
the underlying model of mutation. MIGRATE is
also notable for its ability to utilize different data
types, including microsatellite data, rather than
only DNA sequences (Table 1). Like MDIV and
GENETREE, MIGRATE produces estimates of
h, which provide a coalescent-based inbreeding

effective population size for comparison with
short-term temporal methods.

All of the above programs are aimed at esti-
mating long-term gene flow among populations, as
is traditionally done using the FST/Nm method.
Wilson and Rannala (2003) have developed a non-
equilibrium Bayesian method for estimating rates
of recent migration among populations. Their
method is more akin to the assignment approaches
discussed in the previous section in that it uses
multi-locus genotypes as probabilistic indicators of
source population and thus produces estimates of
recent migration rather than the long-term gene
flow estimates of FST/Nm or the coalescent-based
estimators. It is thus a complementary approach
and could be used in conjunction with an estima-
tor of long-term gene flow. Notably, Wilson and
Rannala’s model is truly non-equilibrium because
it doesn’t require the loci to be in Hardy–Weinberg
equilibrium. Also, rather than simply assigning
individuals based on population allele frequencies,
BAYESASS+ simultaneously estimates popula-
tion migration rates, individual migrant ancestries,
and the population allele frequencies. This has the
important effect of avoiding the bias of including
immigrant individuals in the estimation of allele
frequencies. BAYESASS+ is appropriate for the
analysis of allelic data including allozymes, mi-
crosatellites, restriction fragment length polymor-
phisms (RFLPs), and SNPs.

As a by-product of estimating migration rates,
many of the above methods produce an estimate of
genetic diversity, h ¼ 4Nel, where Ne is the
inbreeding effective population size and l is the
mutation rate per site per generation. With an
estimate of mutation rate for the gene region or
regions under consideration, we can solve for the
current and/or historical effective population size.
Crandall et al. (1999) reviewed a number of earlier
genetic estimators of effective population sizes as
well as conceptual issues associated with this
parameter, but since then many new methods have
been developed (Beerli and Felsenstein 2001;
Nielsen and Wakeley 2001; Yang 2002; Wall
2003). As is the case with genetic estimates of
migration rates, however, indirect genetic esti-
mates of effective population size represent a value
fundamentally different from census size estimates
derived from either physical studies or from
recently developed direct genetic methods (Palsbøll
et al. 1997; Mills et al. 2000; Pearse et al. 2001).
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For example, Turner et al. (2002) found that al-
though Ne estimates from both a temporal change
in allele frequency method (short-term variance
Ne) and MIGRATE (deep coalescent-based
inbreeding Ne) were very similar, they were much
lower than the current census size suggested.
Similarly, Roman and Palumbi’s (2003) use of
MIGRATE to estimate h from mtDNA sequences
for several species of North Atlantic whales sug-
gests that historical population sizes were much
larger than previously thought. All of these find-
ings illustrate the great potential for making
demographic inferences from genetic data when
appropriate analyses are applied. However, these
methods are in need of further benchmarking
through computer simulation in terms of exploring
their accuracy, statistical power, and robustness to
violations of their assumptions, as well at the type
and quantity of data needed. Initial studies suggest
that these methods may be problematic under
certain circumstances. Abdo et al. (2004) used a
coalescent simulation approach to test the accu-
racy of MIGRATE to estimate genetic diversity
(h), migration rates, and confidence intervals. They
ran 1000 simulations for each parameter set of
three different levels of genetic diversity by four
different migration rates by two different sequence
lengths. The results indicated that under these
specific conditions, MIGRATE performed well at
estimating genetic diversity, but poorly at esti-
mating migration rates and confidence intervals.
Clearly more extensive simulations exploring a
greater variety of situations, including violations
of method assumptions, is critical for a good
understanding of the performance of such
methods.

Growing or declining? inference of past demography

One of the fundamental questions in conservation
genetics is to determine the historical demography
of a population. For example, we have a need to
distinguish between small populations that natu-
rally have limited genetic variation versus those
that have reduced genetic variation due to a recent
severe reduction in population size. Conversely, a
population may be large in current census size yet
small in effective population size due to a past
bottleneck (Crandall et al. 1999; Turner et al.
2002). In either case the influence of past demog-
raphy on current genetic variability can have

important management implications in terms of
the genetic stability of populations and the po-
tential impact of inbreeding depression on popu-
lation viability (Vilà et al. 2003). Similarly, in
invasive species biology, it is critical to identify the
genetic front of population expansion and identify
where geographically this expansion is taking
place. Recently, population geneticists have ad-
dressed the need to partition recurrent evolution-
ary processes such as gene flow from individual
historical events (e.g., past fragmentation, coloni-
zation, bottlenecks, or range expansion events). By
partitioning out these historical events, one can
obtain better and more realistic measures of the
potential for ongoing gene flow in the populations
of interest. Emerson et al. (2001) provided an
excellent review of many of the recently developed
methods to identify past demographic events. Here
we will highlight the more commonly used ap-
proaches to provide an introduction to the various
methods available, as well as reviewing additional
methods developed since that review (Table 1).

DNA sequences

Rogers and Harpending (1992) showed that under
an infinite-sites model the shape of the distribution
of the number of observed differences between
pairs of DNA sequences can be used to infer
population expansion or contraction events. The
theoretical expectation is that an episode of pop-
ulation growth produces a distinctive ‘‘wave’’ in
the distribution of pairwise genetic distances (the
mismatch pair distribution, Harpending and
Rogers 2000). Bottlenecks are predicted to gener-
ate a similar wave, but with elevated upper tail
probabilities. However, the pattern of the mis-
match distribution following a population con-
traction or growth event can be affected by levels
of gene flow (high versus low). High gene flow
causes most coalescent events to occur around the
expansion/contraction event, resulting in a uni-
modal mismatch distribution, while low gene flow
causes coalescent events to occur early in the
genealogy resulting in a bimodal distribution (Ray
et al. 2003). Therefore, we advise caution in the
interpretation of results, given the multiple possi-
ble explanations. This method has recently been
expanded to include a finite-sites model of
evolution accommodating rate heterogeneity cou-
pled with a bootstrap procedure to define confi-
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dence intervals around the estimated parameters
(Schneider and Excoffier 1999), and can be
implemented in the software package ARLE-
QUIN (Table 1). Considering single-locus se-
quence data, Nielsen (2001) pointed out that
neutrality tests such as Tajima’s D-test (Tajima
1989) are actually unable to distinguish between
the signal generated by selection on the locus and
that of a past bottleneck in the population, and
thus could function equally well as a bottleneck
test, especially if multiple loci revealed the same
pattern. Conversely, the action of selection on
DNA loci should not be ignored in conservation
genetic studies, especially if only a single locus is
used (Ford 2002).

Coalescent-based approaches have also been
developed that incorporate a population growth
parameter in the model of population dynamics
such that the exponential growth rate can be
modeled as Ne(t) ¼ Ne(0)e

)rt, where r is the esti-
mated growth rate of the population and is posi-
tive for expanding populations and negative for
declining populations, Ne(t) is the effective popu-
lation size at time t in the past, and Ne(0) is the
initial or current effective population size. Theo-
retically these methods can not only determine if
the population has been through a recent period of
growth or decline, but also the rate of growth or
decline. Kuhner et al. (1995, 1998) have developed
a method, implemented in the program FLUC-
TUATE, that samples effectively across alternative
(reasonable) gene genealogies for non-recombining
sequences. However, analytical and simulation
results have shown that the estimate of growth rate
is biased upwards when a finite number of indi-
viduals is sampled (Kuhner et al. 1998), a problem
shared with a similar, earlier approach by Griffiths
and Tavaré (1994).

One drawback of the above parametric model
for population growth is the assumption of expo-
nential growth (or decline). There is typically no a
priori reason to make this assumption for a given
population, especially in conservation genetics
applications. To avoid this assumption, Strimmer
and Pybus (2001), (see also Nee et al. 1995; Pybus
et al. 2000) developed a nonparametric approach
they called the generalized skyline plot. The sky-
line plot assumes a single coalescent history with
rate correlation among different branches. It then
defines internode intervals along this history and
allows the population size to vary among intervals.

The generalized skyline plot, then, is the plot of the
estimated population sizes at these internode
intervals, which are assumed to correspond to a
constant time interval. Although this approach
relaxes the strict assumption of the exponential
growth for the population, it assumes a single
evolutionary history instead of performing the
importance sampling of FLUCTUATE. Rooney
et al. (2001) have used this general approach to
examine population dynamics and historical pop-
ulation sizes in Bowhead whales. The generalized
skyline plot is implemented in the software pack-
age GENIE (Pybus and Rambaut 2002).

Microsatellite data

Because they are highly variable and can be scored
as multi-allelic Mendelian markers, microsatellite
loci are especially useful for the inference of recent
demographic events, including detection of
human-induced impacts on populations. Thus, a
variety of methods have been developed specifi-
cally for microsatellite data to identify historical
demographic events. Due to the unique mutational
dynamics of microsatellites, approaches that use
them to detect demographic events rely on models
of the evolution of microsatellite alleles (Kimmel
et al. 1998; Beaumont 1999). Of particular note are
methods that use microsatellite data to detect
evidence of past reductions in population size.
Like the assignment tests discussed previously,
these methods are not coalescent based, but rely
on the high polymorphism of microsatellite loci
and expectations of equilibrium allele or genotype
frequencies and distributions to detect the influ-
ence of past demographic events on standing ge-
netic variation. The simple nature of these tests
makes them computationally straightforward, and
they have been successfully used on a number of
empirical data sets (e.g., Spencer et al. 2000;
Beebee and Rowe 2001; Waldick et al. 2002). The
program BOTTLENECK (Piry et al. 1999) detects
past population reductions by testing for a tran-
sient (�0.2–4.0 Ne generations) excess in measured
heterozygosity compared with the heterozygosity
expected at equilibrium (Cornuet and Luikart
1996; Luikart and Cornuet 1998). This excess in
heterozygosity is generated because rare alleles are
quickly lost due to drift during a bottleneck, but
they contribute little to the expected heterozygos-
ity. This same property – loss of rare alleles – also
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led to the development of an entirely different test
by Garza and Williamson (M-RATIO, 2001).
Here the test statistic is the ratio between the
number of alleles present at a given microsatellite
locus, k, and the range in allele sizes in base pairs,
r, so that M ¼ k/r. This ratio will be reduced in a
population that has suffered a bottleneck; the rare
alleles are lost by drift more often than common
alleles during a population size reduction, but
unless all rare alleles are at the ends of the allele
size distribution the range of alleles sizes will not
be affected (Garza and Williamson 2001). Because
these two methods utilize different properties of
microsatellite loci, and thus different effects of a
bottleneck on variability at those loci, concor-
dance in their results would provide increased
confidence in the evidence for past demographic
reduction in a population.

As discussed above for DNA sequences, coa-
lescent-based methods have been developed to in-
fer historical demographic parameters from
microsatellite data. BATWING (Wilson et al.
2003), a direct descendent of MICSAT (Wilson
and Balding 1998), uses MCMC to conduct a
Bayesian estimation of mutation rate, effective
population size, growth rates, times of population
splitting events, and time since most recent com-
mon ancestor (TMRCA). BATWING can con-
sider either microsatellite or SNP data sets, but is
limited in that it assumes complete linkage among
loci (e.g., loci identified on the Y-chromosome), as
well as no migration between subpopulations after
an initial split.

Beaumont (1999) developed a coalescent-
based method to detect demographic changes
using the more typical, unlinked, microsatellite
loci used in population genetic studies, and
suggested that it and other methods like it would
lead to a revolution in population genetic anal-
ysis. As predicted, it has since been successfully
applied to empirical data sets as well as extended
to estimate more parameters and make fewer
assumptions (Storz and Beaumont 2002). For
example, Storz et al. (2002) were able to docu-
ment a historical population decline followed by
a stable population size throughout recent times
in savannah baboons, a result consistent with
findings using the program BOTTLENECK, but
extending beyond the range of non-coalescent
demographic approaches into deeper population
history.

Finally, attempts have been made to recon-
struct complex histories of population introduc-
tion, colonization, and expansion over very recent
timescales (<100 years). Although making reliable
inferences in complex, non-equilibrium situations
remains challenging, these sophisticated Bayesian
methods have found some success in reconstruct-
ing colonization histories (Estoup et al. 2001; Es-
toup and Clegg 2003). They are currently limited
by computational power, but improvements in
parameter estimation efficiency through the use of
MCMC simulation may provide increased speed
and precision, allowing a greater range of demo-
graphic histories to be recovered (Estoup et al.
2001).

Phylogeography and landscape genetics

Avise et al. (1987) introduced the word phyloge-
ography to encompass the idea of comparing
phylogenetic relationships within a geographic
context, and this idea subsequently developed into
an entire sub-discipline in population genetics
(Avise 2000). The principal aim of phylogeography
is to examine population structure in the context
of geographic distributions of organisms. Early
efforts, however, lacked an explicit framework in
which to evaluate the causes of phylogeographic
patterns, and the first statistical approach devel-
oped to overlay genealogical information on geo-
graphic distribution and partition historical
demographic events from recurring population
structure was the nested clade analysis (NCA),
introduced by Templeton et al. (1995). The claimed
advantage of the NCA approach over earlier
methods is that it partitions historical events both
temporally and spatially. Thus, instead of testing
for a single demographic event, NCA is presum-
ably able to infer multiple events such as past
fragmentation, colonization, or range expansion,
and these events can occur at the same time in
different regions of the species distribution or at
different time points in the evolutionary history.
To accomplish this, NCA uses the reconstructed
gene genealogy to define a hierarchically nested
statistical design, and then overlays sample loca-
tion information on that nested design to identify
the relationships between the geographic dis-
tances and the genetic distances. These relation-
ships are then compared with predictions from
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population genetic theory to infer historical
events impacting the current distribution of ge-
netic variation. Emerson et al. (2001: Box 3, Ta-
ble 1) suggest that NCA makes fewer
assumptions about the data than other methods
designed to detect demographic events. The
underlying genealogy used by NCA is estimated
with the software TCS (Clement et al. 2000);
NCA is then performed using the program
GEODIS (Posada et al. 2000).

Recently, Knowles and Maddison (2002) have
criticized NCA on the grounds that (1) it fails to
account for the stochastic nature of demographic
histories and, (2) in contrast to the methods
previously discussed, NCA lacks a statistical
assessment of support for one inferred demo-
graphic history over another. Although NCA has
been shown to perform well at identifying a
specific demographic event in empirical data sets
with well-established a priori expectations (range
expansion in species now inhabiting previously
glaciated areas, Templeton 1998), Knowles and
Maddison (2002) question the validity of other
inferences made using NCA, and call for a
merging of statistically robust methods of
parameter estimation with the broad-reaching
inference approach of NCA. However, Knowles
and Maddison (2002) offer no such method.
Templeton (2004) has defended NCA on both
theoretical grounds (both supporting the method
and critiquing the study by Knowles and Madd-
ison) and empirical grounds (demonstrating the
utility of this approach using a large number of
empirical data sets with presumed historical
events).

An alternative to the broad-reaching phy-
logeography approaches is landscape genetics
(Manel et al. 2003). These developing methods
focus on finer spatial scales compared to phy-
logenetic approaches, and use a variety of sta-
tistical methods to detect population genetic
discontinuities and correlate them with geo-
graphic features (reviewed by Manel et al. 2003).
Thus, the best evaluations of population genetic
data to answer conservation questions may
come from the combination of phylogeographic
and landscape genetic approaches with the sta-
tistical approaches described in previous sections
to best define the population structure and
demographic history of a species (Masta et al.
2003).

Concerns

To be sure, these newly developed methods come
with a variety of concerns as well. Most of these
methods have not been thoroughly evaluated in
terms of robustness to violations of assumptions,
accuracy of inferences, and relative efficiencies
with respect to amounts of data and computa-
tional time (e.g., Abdo et al. 2004; Berry et al.
2004). With the ever increasing number of
parameters, one should question whether or not
the amount of data are sufficient to produce
accurate estimates. Any method is dependent upon
reasonable sampling of both organisms and genes,
and it is unclear how robust the inferences from
these methods might be to nonrandom or poor
sampling. Studies are now underway to evaluate
some of these methods using computer simulation.

Prospects

We have provided an overview of aspects of sta-
tistical population genetic analysis relevant to
conservation genetics. However, we do not claim it
is completely comprehensive, nor have we begun
to cover all areas of statistical genetics that have
seen recent advances based on maximum
likelihood and/or Bayesian inference methods
(e.g., relatedness (Milligan 2003), parentage cal-
culations (Emery et al. 2001; reviewed by Jones
and Ardren 2003), hybridization/admixture anal-
yses (Anderson and Thompson 2002; Randi and
Lucchini 2002)). Furthermore, the development
and testing of new methods is proceeding at a pace
that will quickly render this review out-of-date.
Finally, as noted above, many of the methods we
describe are in their infancy and remain to be fully
evaluated, so comparisons of existing methods
should be done to allow direct evaluation of their
performance (e.g., see the April 2004 special issue
of Molecular Ecology). Thus, our hope is that this
review will provide a useful starting point and
guide to methods of data analysis suitable for
conservation genetics, and even more importantly,
that it will stimulate further comparative testing
and analysis of these methods relative to conser-
vation genetic data. Bayesian approaches, espe-
cially those coupled with faster summary statistics
(e.g., Ray et al. 2003), seem to hold great promise
for the future of conservation genetic data analysis
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(Beaumont and Rannala 2004). Thus, to achieve a
better understanding of the population dynamics
and population histories of endangered flora and
fauna, the most thorough analyses will incorporate
a variety of approaches with complementary
assumptions and strengths to effectively move be-
yond a simple estimate of FST. Future work nee-
ded to fully realize the utility of many of the
methods discussed herein includes:
• Faster implementation with more user-friendly

software. The usability of available programs
varies considerably, and for large data sets, run
time can be a significant barrier (as is the case
for many phylogenetic programs). In addition,
programs that require advanced knowledge
and an inordinate amount of user effort in or-
der to produce reliable results are unlikely to be
widely embraced by empirical geneticists. Thus,
improving software usability is essential. A
related problem is that as the number of
available programs increases, so too does the
number of input file formats. This has led to
the need for programs to convert input files for
a variety of programs (e.g., MSA, Dieringer
et al. 2003; CONVERT, Glaubitz 2004).

• Consideration of sample size issues. Several
authors have noted that increasing the accu-
racy of demographic growth, population size,
and migration rate estimates for all of these
coalescent-based methods is dependent on
generating data from more loci rather than
more individuals per population (Beerli 1998;
Kuhner et al. 1998; Wilson and Rannala 2003).
However, for any empirical study using these
methods it will still be important to assess the
minimum number of samples per population
needed to provide reasonable power to differ-
entiate populations based on allele frequencies,
particularly with highly variable markers.

• Relaxation of the central assumptions that are
typically violated by real data (e.g., mutation
models for microsatellites, equilibrium genet-
ics, large population size, infinite alleles, etc.).
Many newer methods relax at least some of
these assumptions, and Wilson and Rannala
(2003) have provided the first estimator of
migration rate that explicitly does not require
Hardy–Weinberg equilibrium. Equally impor-
tant is evaluation of the ability of these
methods to perform when actual population
divergence levels are very low, as in the case of

high gene-flow species (e.g., Waples 1998;
Berry et al. 2004).

• The interpretation of genetic data in conser-
vation contexts needs to be carefully evaluated
as our use of finer resolution genetic markers
and sophisticated analysis increases (this ap-
plies to estimates of FSTST as well as results from
newer analyses). For example, there is little
consensus on the relative risks of inbreeding
versus outbreeding depression among popula-
tions with different divergence levels (Friar
et al. 2001), an important issue when consid-
ering the management implications of a con-
servation genetic study. Similarly, what
constitutes ‘‘significant’’ genetic differences
among populations is an open question that
has important management implications.
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